Studies in the Modern Ocean

CTD/hydrocast package descending into the Southern Ocean. Photo Kenemy

The CTD/hydrocast package descending into the Southern Ocean water column from the deck of the South African research icebreaker S.A. Agulhas II, sailing from Cape Town to the Antarctic winter ice edge. Photo: Preston Cosslett Kemeny ’15

 

References

225 Publications
The Younger Dryas cooling 12,700 years ago is one of the most abrupt climate changes observed in Northern Hemisphere palaeoclimate records. Annually laminated lake sediments are ideally suited to record the dynamics of such abrupt changes, as the seasonal deposition responds immediately to climate, and the varve counts provide an accurate estimate…
An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation (AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturning circulation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacific…
Planktonic foraminifer tests are major archives of environmental change and provide a multitude of proxies in paleoceanography and paleoclimatology. The application of such proxies is contingent upon a collaborative effort to better understand how the living organisms record the properties of their environment and how the resulting signals are…
The nitrogen (N) isotopes provide an integrative geochemical tool for constraining the fixed N budget of the ocean. However, N isotope budgeting requires a robust estimate for the organism-scale nitrogen isotope effect of denitrification, in particular as it occurs in water column denitrification zones (εwcd). Ocean field data interpreted with the…

The greater Agulhas Current region is an important component of the climate system, yet its influence on carbon and nutrient cycling is poorly understood. Here, we use nitrate isotopes (δ15N, δ18O, Δ(15–18) = δ15N–δ18O) to trace regional water mass circulation and investigate nitrogen cycling in the Agulhas Current and adjacent recirculating…

We present real-time optical polarization subtraction for calibration of Faraday rotation spectra. Noise analysis yields minor isotope sensitivity of 3.0 ppbv·Hz-1/2 and 1.7×10-8 rad·Hz-1/2 noise-equivalent angle. Sub-permil ratiometric precision is achieved at integration times >100 s. © 2016 OSA.
The analysis of the nitrogen (N) isotopic composition of organic matter bound to fossil biomineral structures (BB-δ15N) using the oxidation–denitrifier (O–D) method provides a novel tool to study past changes in N cycling processes. Methods: We report a set of methodological improvements to the O–D method, including (a) a method for sealing the…

Biological dinitrogen fixation is the major source of new nitrogen to marine systems and thus essential to the ocean’s biological pump. Constraining the distribution and global rate of dinitrogen fixation has proven challenging owing largely to uncertainty surrounding the controls thereon. Existing South Atlantic dinitrogen fixation rate…

We have previously argued that the Antarctic and subarctic North Pacific are stratified during ice ages, causing to a large degree the observed low CO2 levels of ice age atmospheres by sequestering respired CO2 in the ocean abyss. Here, we suggest a mechanism for the major deglaciations of the late Pleistocene. The mechanism begins with…

In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (δ15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the…
Salinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present…
Phytoplankton growth is potentially limited by the scarcity of biologically available forms of nitrogen such as nitrate and ammonium. In the subtropical ocean gyres, water column stratification impedes the upward flux of nitrate to surface waters. Phytoplankton in these waters are assumed to rely largely on ammonium and other forms of nitrogen…
North Atlantic (NA) deep-water formation and the resulting Atlantic meridional overturning cell is generally regarded as the primary feature of the global overturning circulation and is believed to be a result of the geometry of the continents. Here, instead, the overturning is viewed as a global energy-driven system and the robustness of NA…
Atmospheric deposition of nitrogen (N) and base cations was measured for 5-7 years on the island of Hawaii and for 1.5 years on Kauai. On Hawaii, mean annual fluxes of K+, Mg2+, and Ca2+ were 15, 17, and 13 kg ha-1 yr-1, respectively. Fog interception was the largest deposition pathway. Sea salt contributed the majority of cations, although…
We report a new method for measurement of the isotopic composition of nitrate (NO3-) at the natural-abundance level in both seawater and freshwater. The method is based on the isotopic analysis of nitrous oxide (N2O) generated from nitrate by denitrifying bacteria that lack N2O-reductase activity. The isotopic composition of both nitrogen and…

The cyclic growth and decay of continental ice sheets can be reconstructed from the history of global sea level. Sea level is relatively well constrained for the Last Glacial Maximum (LGM, 26,500 to 19,000 y ago, 26.5 to 19 ka) and the ensuing deglaciation. However, sea-level estimates for the period of ice-sheet growth before the LGM vary by …

Zinc (Zn) is vital to marine organisms. Its active uptake by phytoplankton results in a substantial depletion of dissolved Zn, and Zn bound to particulate organic matter replenishes dissolved Zn in the ocean through remineralization. However, we found that particulate Zn changes from Zn bound to phosphoryls in cells to recalcitrant inorganic pools…
Recent evidence from the sulfur isotopic record indicates a transition ∼2.5 billion years ago from an ocean chemistry first dominated by iron and then by sulfide. It has been hypothesized that the selection of metal centers in metalloenzymes has been influenced by the availability of metals through geological time, in particular as a result of…
The ocean s biological pump refers to the coupled biological, chemical, and physical processes that work to concentrate carbon and other biologically active elements in the voluminous ocean interior, sequestering them from the surface ocean and the atmosphere. Current research seeks to understand the relationship of the ocean s biological pump…
We investigate the response of the calcite lysocline to changes in the export production of the low-latitude surface ocean (the combined equatorial, tropical, and subtroical regions). We employ different CaCO3 throughput schemes in a time-dependent ocean carbon cycle model to separate the CaCO3 production/iysocline balance from the other…
In a box model synthesis of Southern Ocean and North Atlantic mechanisms for lowering CO2 during ice ages, the CO2 changes are parsed into their component geochemical causes, including the soft-tissue pump, the carbonate pump, and whole ocean alkalinity. When the mechanisms are applied together, their interactions greatly modify the net CO2 change…
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods, but direct evidence regarding…
The analyses of the stable isotope ratios of carbon (δ13C), nitrogen (δ15N), and oxygen (δ18O) in animal tissues are powerful tools for reconstructing the feeding behavior of individual animals and characterizing trophic interactions in food webs. Of these biomaterials, tooth enamel is the hardest, most mineralized vertebrate tissue and therefore…
In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as fixed nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial-interglacial changes in…
Ground-truthing the stable isotope ratio of diatom frustule-bound organic nitrogen (N) as a paleoceanographic proxy of phytoplankton nutrient consumption calls for studies of modern diatoms from cultures and the field. This work has been hindered by the lack of a method to prepare fresh diatom material, which has significant geochemical…
In the anoxic Cariaco Basin of the southern Caribbean, the bulk titanium content of undisturbed sediment reflects variations in riverine input and the hydrological cycle over northern tropical South America. A seasonally resolved record of titanium shows that the collapse of Maya civilization in the Terminal Classic Period occurred during an…
The response of tropical forests to climate change will depend on individual plant species nutritional strategies, which have not been defined in the case of the nitrogen nutrition that is critical to sustaining plant growth and photosynthesis. We used isotope natural abundances to show that a group of tropical plant species with diverse growth…
We report the results of a field incubation experiment demonstrating a substantial shift in the taxonomic composition of Equatorial Pacific phytoplankton assemblages exposed to CO2 levels of 150 and 750 ppm (dissolved CO2 ∼3 to 25 μM). By the end of the experiment, the phytoplankton community in all samples was dominated by diatoms and Phaeocystis…
The15N/14N ratio of the fish-native organic matter preserved in fish otoliths (or δ15Noto) may allow for reconstruction of fish trophic history and changes in food webs. To support this application, ground-truthing data are needed on the relationships among the δ15N of diet, of fish tissue (e.g., white muscle tissue, δ15Nwmt), and δ15Noto. Using a…
The open subarctic Pacific is, at present, a high nitrate low chlorophyll (HNLC) region, where nitrate is perennially abundant at the surface. Theoretically, the HNLC status of this region is subject to modification by ocean circulation and/or micronutrient supply, with implications for the effectiveness of the biological pump and hence carbon…
The nitrogen-isotope record preserved in Southern Ocean sediments, along with several geochemical tracers for the settling fluxes of biogenic matter, reveals patterns of past nutrient supply to phytoplankton and surface-water stratification in this oceanic region. Areal averaging of these spatial patterns indicates that reduction of the CO2 leak …
In order to strengthen environmental application of nitrate N and O isotopes, we measured the N and O isotopic fractionation associated with cellular nitrate uptake and efflux in the nitrate-assimilating marine diatom Thalassiosira weissflogii. We isolated nitrate uptake and efflux from nitrate reduction by growing the cells in the presence of…
Chilean margin sedimentary N isotope records have been the focus of paleoceanographic studies examining the extent of water-column denitrification in the eastern South Pacific in the past. Here we use 15N/14N of nitrate and surface sedimentary N along the Chilean coast to investigate the relative contributions of water-column denitrification and…

The nitrogen isotopes (δ15N) in the organic fraction of accretionary hard part structures, such as fish otoliths, may provide life histories of dietary change. We performed controlled experiments to validate the dynamics of the isotopic signal incorporation into biominerals following dietary shifts and also compared whole-otolith and serial…

We tested the hypothesis that the nitrogen (N) isotopic signature (δ15N) of coral skeletal organic material (CS-δ15N) matches that of the coral tissue and also reflects the δ15N of water column fixed N, such that CS-δ15N can be used as a proxy for spatio-temporal oceanic N isotope distributions. Strong correlations between the δ15N of skeletal…

For times prior to those represented by the air trapped in Antarctic ice core records, the concentration of CO2 in the atmosphere must be reconstructed using geochemical proxies. The δ13C of particulate organic carbon (POC) produced in ocean surface waters has previously been observed to covary with the concentration of CO2 in the water…

The Sargasso Sea is characterized by strong summertime stratification that is thought to drive oligotrophy, but export production is surprisingly similar to that of high-latitude regions with ample major nutrient supply. Here we use the summer-to-fall progression in the northwestern Sargasso Sea to investigate the relationship between upper ocean…
The stable nitrogen (N) and oxygen (O) isotope ratios (15N/14N and 18O/16O, respectively) of nitrate (NO3-) were measured during incubations of freshly collected seawater to investigate the effect of light intensity on the isotope fractionation associated with nitrate assimilation and possible co-occurring regeneration and nitrification by in situ…
The difference between nitrate δ15N and δ18O, or Δ(15-18), is sensitive to organic matter remineralization and tracks the modification of nitrate as it passes from the deep Pacific Ocean, through the Southern Ocean surface, and into the intermediate-depth Pacific. Circumpolar Deep Water (CDW) is upwelled with a nitrate Δ(15-18) of +3.0‰ and…
We studied the nitrogen biogeochemistry of the ice-covered eastern Bering Sea shelf using the isotope ratios (15N/14N and 18O/16O) of NO3- and other N species. The 15N/14N of late winter NO3 - on the shelf decreases inshore and is inversely correlated with bottom water [NH4+], consistent with an input of low- 15N/14N NO3- from partial…
We report the first measurements of coupled nitrogen (N) and oxygen (O) isotopic variations of nitrate (NO3-) during its assimilation by laboratory cultures of marine phytoplankton and derive the N and O kinetic isotope effects for nitrate assimilation by three species of diatoms (Thalassiosira weissflogii, Thalassiosira oceanica, and…
Water column depth profiles along the North Pacific margin from Point Conception to the tip of Baja California indicate elevation of nitrate (NO3-) 15N/14N and 18O/16O associated with denitrification in the oxygen-deficient thermocline waters of the eastern tropical North Pacific. The increase in δ18O is up to 3%o greater than in δ15N, whereas our…
We report 15N/14N and 18O/16O ratios of nitrate in benthic chamber incubations in the continental shelf sediments of the Santa Monica Bay (SMB) to deconvolve the effects of nitrification and denitrification. Estimates of denitrification rate from benthic flux stoichiometry range from 0.9 to 2.5 mmol N m-2 d -1. Between 46% and 100% of the total…
The Southern Ocean regulates the ocean s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core…
Temporal variations in the atmospheric concentration of radiocarbon sometimes result in radiocarbon-based age-estimates of biogenic material that do not agree with true calendar age. This problem is particularly severe beyond the limit of the high-resolution radiocarbon calibration based on tree-ring data, which stretches back only to about 11.8…
Constraining variations in marine N2-fixation over glacial-interglacial timescales is crucial for determining the role of the marine nitrogen cycle in modifying ocean productivity and climate, yet paleo-records from N2-fixation regions are sparse. Here we present new nitrogen isotope (δ15N) records of bulk sediment and foraminifera test-bound (FB)…
Growing evidence suggests that the low atmospheric CO 2 concentration of the ice ages resulted from enhanced storage of CO 2 in the ocean interior, largely as a result of changes in the Southern Ocean. Early in the most recent deglaciation, a reduction in North Atlantic overturning circulation seems to have driven CO 2 release from the Southern…
Biologically available nitrogen (fixed N) is removed from the oceans by metabolic conversion of inorganic N forms (nitrate and ammonium) to N2 gas. Much of this removal occurs in marine sediments, where reaction rates are thought to be limited by diffusion. We measured the concentration and isotopic composition of major dissolved nitrogen species…