References
24 Publications
Applied Filters:
First Letter Of Title:
I
Reset
Bulk sediment δ15N records from the eastern tropical Pacific (ETP) extending back to the last ice age most often show low glacial δ15N, then a deglacial δ15N maximum, followed by a gradual decline to a late Holocene δ15N that is typically higher than that of the Last Glacial Maximum (LGM). The lower δ15N of the LGM has been interpreted to reflect…
The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly…
It is understood that the global mean ocean nitrate δ15N is set by the δ15N of the input of fixed nitrogen (N) to the ocean (mostly N2 fixation) and the net isotopic discrimination of fixed N loss (mostly denitrification). Here, we demonstrate that, in addition to the fixed nitrogen input/output budget, the isotopic discrimination of nitrate…
We present a dual-modulation Faraday rotation spectrometer with in-line optical subtraction for differential measurement of nitric oxide (NO) isotopologues. In-situ sample referencing is accomplished via differential dual-cell measurements, with 3.1 ppbv/rt(Hz) (15NO) sensitivity through 15 cm optical path length. Our system operates at 1.9x…
A rise in the atmospheric CO2 concentration of 20 parts per million over the course of the Holocene has long been recognized as exceptional among interglacials and is in need of explanation. Previous hypotheses involved natural or anthropogenic changes in terrestrial biomass, carbonate compensation in response to deglacial outgassing of oceanic…
A aeries of climate simulations using on atmospheric general circulation modal shows that maintaining ocean heat transport at close to present-day values, but with otherwise glacial boundary conditions, leads to an enhanced cooling, particularly in the tropics. This is in agreement with recent geochemical evidence from fossil corals, ground waters…
The isotopic composition of skeleton-bound organic nitrogen in shallow-water scleractinian corals (hereafter, CS-δ15N) is an emerging tool for studying the marine nitrogen cycle in the past. The CS-δ15N has been shown to reflect the δ15N of nitrogen (N) sources to corals, with most applications to date focusing on the anthropogenic/terrestrial N…
The Asian-Australian monsoon is an important component of the Earth s climate system that influences the societal and economic activity of roughly half the world s population. The past strength of the rain-bearing East Asian summer monsoon can be reconstructed with archives such as cave deposits, but the winter monsoon has no such signature in the…
Identifying the dominant sources of atmospheric reactive nitrogen (N r) is critical for determining the influence of anthropogenic emissions on Nr deposition, especially in marine ecosystems. To test the influence of anthropogenic versus marine air masses, samples were collected in Bermuda, where seasonal atmospheric circulation patterns lead to…
The Agulhas Current, like other western boundary currents (WBCs), transports nutrients laterally from the tropics to the subtropics in a subsurface “nutrient stream.” These nutrients are predominantly supplied to surface waters by seasonal convective mixing, to fuel a brief period of productivity before phytoplankton become nutrient-limited…
Measurements to date have shown that both bulk and high molecular weight marine dissolved organic nitrogen (DON) have a 15N/ 14N that is substantially higher than the 15N/ 14N of suspended particulate organic nitrogen (PN susp) found in the same surface waters (with δ 15N of ∼4 to 5‰ and ∼-1 to 1‰, respectively). Moreover, the concentration and…
John H. Martin, who discovered widespread iron limitation of ocean productivity, proposed that dust-borne iron fertilization of Southern Ocean phytoplankton caused the ice age reduction in atmospheric carbon dioxide (CO2). In a sediment core from the Subantarctic Atlantic, we measured foraminifera-bound nitrogen isotopes to reconstruct ice age…
Both the nitrogen (N) isotopic composition (δ 15 N) of the nitrate source and the magnitude of isotope discrimination associated with nitrate assimilation are required to estimate the degree of past nitrate consumption from the δ 15 N of organic matter in Southern Ocean sediments (e.g., preserved within diatom microfossils). It has been suggested…
Over the last two decades, the skeletal remains of deep-sea corals have arisen as a geochemical archive of Pleistocene oceanographic change. Here we report the exploration of the isotopic composition of the carbonate-bound organic nitrogen (hereafter, CB-δ15N) in the deep-sea scleractinian coral Desmophyllum dianthus as a possible tool for…
Treatment of diatom microfossils from Southern Ocean sediments with hot perchloric acid leaves a diatom-bound N fraction which is 0-4‰ lower in δ15N than the bulk sediment, typically 3‰ lower in recent Antarctic diatom ooze. Results from Southern Ocean surface sediments indicate that early diagenetic changes in bulk sediment N content and δ15N…
Emissions of anthropogenic nitrogen (N) to the atmosphere have increased tenfold since preindustrial times, resulting in increased N deposition to terrestrial and coastal ecosystems. The current sources of N deposition to the ocean, however, are poorly understood. To investigate the sources of nitrate in rainwater deposited to the ocean, two years…
The skeleton-bound organic nitrogen in reef-building symbiotic corals may be a high-resolution archive of ocean nitrogen cycle dynamics and a tool for understanding coral biogeochemistry and physiological processes. However, the existing methods for measuring the isotopic composition of coral skeleton-bound organic nitrogen (hereafter, CS-δ15N)…
We investigate the response of the 15N/14N of oceanic nitrate to glacial/interglacial changes in the N budget, using a geochemical box model of the oceanic N cycle that includes N2 fixation and denitrification in the sediments and suboxic water column. This model allows us to quantify the isotopic response of different oceanic nitrate pools to…
Emissions of anthropogenic nitrogen (N) to the atmosphere have increased tenfold since preindustrial times, resulting in increased N deposition to terrestrial and coastal ecosystems. The sources of N deposition to the ocean, however, are poorly understood. Two years of event-based rainwater samples were collected on the island of Bermuda in the…
The nitrogen isotopic composition (15N/14N) of forested ecosystems varies systematically worldwide. In tropical forests, which are elevated in 15N relative to temperate biomes, a decrease in ecosystem 15N/14N with increasing rainfall has been reported. This trend is seen in a set of well characterized Hawaiian rainforests, across which we have…
We report wintertime nitrogen and oxygen isotope ratios (δ15N and δ18O) of seawater nitrate in the Southern Ocean south of Africa. Depth profile and underway surface samples collected in July 2012 extend from the subtropics to just beyond the Antarctic winter sea ice edge. We focus here on the Antarctic region (south of 50.3°S), where application…
Rainwater collected on the island of Bermuda between January 2000 and January 2001 shows pronounced seasonal variation in the nitrogen and oxygen isotopic composition of nitrate. Higher 15N/14N and lower 18O/16O ratios are observed in the warm season (April-September) in comparison to the cool season (October-March): The mean δ15N of nitrate for…
A dual-modulation Faraday rotation spectrometer is employed for isotopic ratiometry of nitric oxide (NO) converted from nitrate/nitrite. Excellent linearity of measured NO to dissolved nitrate is demonstrated. Ratiometry of IAEA-NO-3 standards indicates 3 % accuracy. © 2014 OSA.
A dual-modulation Faraday rotation spectrometer is employed for isotopic ratiometry of nitric oxide (NO) converted from nitrate/nitrite. Excellent linearity of measured NO to dissolved nitrate is demonstrated. Ratiometry of IAEA-NO-3 standards indicates ∼3 % accuracy. © 2014 Optical Society of America.