Time-transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation

Publication Year


Journal Article
Marine biological export productivity declined in high-latitude regions in the North Pacific and Southern Ocean 2.7 million years ago, in parallel with the intensification of Northern Hemisphere glaciation. Here we present data from the North Atlantic, which show a similar but time-transgressive pattern of high-latitude productivity decline from 3.3 to 2.5 Ma, with productivity decreasing first at 69°N, hundreds of thousands of years before it declined at 58°N. We propose that the cumulative data are best explained by an equatorward migration of the westerly winds, which caused a southward shift in the zone of Ekman divergence and upwelling-associated major nutrient supply over this time interval. We suggest that a similar equatorward migration of the westerly winds may also help explain the productivity changes observed in other high-latitude regions, particularly the Southern Ocean. At 2.7 Ma, equatorial and temperate Atlantic sites began to show orbitally paced productivity pulses, consistent with a shoaling and meridional contraction of the nutrient-poor "warm sphere" that characterizes the low latitude upper ocean. This timing coincides with observed productivity changes in Southern Ocean, consistent with previous findings that the Southern Ocean exerts a strong influence on the fertility of the low-latitude Atlantic. Finally, we propose that the unique basin geometry of the North Atlantic caused deep water formation in this region to remain relatively stable despite equatorward migration of winds and ocean fronts. Key Points N. Atlantic productivity declines mimic those in other high latitude regions Bihemispheric shift in westerlies drove Plio-Pleistocene productivity changes Contraction of the warm pool increased nutrient supply to subpolar regions ©2013. American Geophysical Union. All Rights Reserved.